
Printing:
“What Programmers Do With Inheritance in Java”*
– Replicated on Source Code
Cigdem Aytekin | Dr. Tijs van der Storm | University of Amsterdam

Problem

Replicate the study “What Programmers Do with

Inheritance in Java” (1) to verify its results.

Research Questions

How are the results of our replication study with respect to the

research questions of the original study? How often do we see:

Late-bound self-reference Subtyping

Reuse Other uses

Project Overview

• The original study proposes a model for usage of defined

inheritance relationships in Java,

• Using this model, the authors analyzed the byte code of 93 open

source Java projects from Qualitas Corpus (2),

• They found that defined inheritance relationships are also used

intensively.

• We replicated this study on Java source code,

• We analyzed 90 projects from Qualitas.class Corpus (3).

• Our results are similar to the original results, but they are not the

same.

Inheritance Usage - Examples

public class P {

void p() {

q(); // down-call }

void q() {}

void a() {}

}
public class C extends P {

void q() {}

void c() {

a(); // internal reuse

}

}

public class N {

void n() {

P aP = new C(); // subtype

C aC = new C();

aC.a(); // external reuse

}

}

Inheritance Usage Model

Inheritance Use Definition

Down-call:

Late-bound self-reference. A parent method issues a

call to another parent method, which is overridden

by child class.

Subtyping:
A child object is supplied where a parent is

expected.

External Reuse:
Child object reuses code of parent object (outside of

child class code).

Internal Reuse:
Child object reuses code of parent object (inside of

child class code).

Other Uses:
Other uses like: constant, marker, category, super,

etc.

Replication - Implementation

• Build Java source AST’s with
Rascal.

• Visit the relevant AST nodes and use
the Rascal M3 model

• Bring the results together for different

metrics and put them in Rascal relations.

Differences in Study Set-up

Original Replication

Java byte code Java source code

Qualitas Corpus (2) Qualitas.class Corpus (3)

Results

Conclusion

• Our results verify the results of the original study for all research
questions to a great extent.

• Most differences are the result of differences between the analyzed
projects and our analysis limitation about external methods.

• We suspect some false positives for down-call and external reuse
in the original study, but there are not many of them. We suspect
that byte code analysis can be misleading in these cases.

Works Cited

• (1) : “What Programmers Do with Inheritance in Java”, by E.

Tempero, H. Y. Yang and J. Noble, ECOOP 2013,p: 577 - 601

• (2) Tempero, Ewan, et al. "The Qualitas Corpus: A curated

collection of Java code for empirical studies." Software Engineering

Conference (APSEC), 2010 17th Asia Pacific. IEEE, 2010.

• (3) Terra, Ricardo, et al. "Qualitas. class Corpus: A compiled

version of the Qualitas Corpus." ACM SIGSOFT Software

Engineering Notes 38.5 (2013): 1-4.

“What Programmers do with Inheritance in Java", by E. Tempero, H. Y. Yang and J. Noble, ECOOP 2013, p: 577 - 601

Replication – Major Limitations

• 25 out of 90 projects have different versions in Qualitas.class

Corpus. For the projects with same versions, the content of source

and byte code distributions are quite different.

• Limitation about analysis of methods defined outside of the project:

fewer cases for subtype and external reuse.

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

0,6000

0,7000

0,8000

0,9000

1,0000

1
3

1
4

1
6

1
7

2
0

2
0

2
0

2
1

2
2

2
5

2
7

3
6

3
7

3
9

4
0

4
9

5
5

6
0

6
0

6
1

6
5

7
1

7
6

9
2

9
4

1
0
1

1
0
3

1
0
5

1
0
7

1
0
8

1
1
4

1
1
5

1
2
2

1
3
3

1
3
7

1
4
9

1
5
4

1
5
6

1
6
1

1
6
4

1
7
1

1
7
8

1
8
5

1
9
1

2
0
5

2
1
1

2
1
7

2
2
0

2
2
6

2
3
0

2
3
1

2
5
7

2
8
6

2
9
2

3
0
5

3
1
0

3
1
3

3
3
9

3
4
8

3
6
4

3
7
7

4
3
4

4
5
3

4
5
9

4
6
0

4
7
4

4
9
5

4
9
8

5
2
8

6
3
6

6
3
7

6
4
4

7
1
2

7
5
5

7
6
1

8
0
6

8
1
1

8
6
8

9
8
2

1
0
1

6
1

0
3

5
1

0
5

0
1

0
5

6
1

1
0

1
1

1
9

6
1

2
6

4
1

4
1

6
1

4
2

6
1

6
3

3
2

9
1

5

P
ro

p
o

rt
io

n

System (Ordered by number of CC pairs)

Purpose for CC pairs

Subtype External Reuse Internal Reuse Only

Results (median %) Original Replication

Down-call 34 27

Subtype - between classes 76 76

External Reuse 22 4

Internal Reuse 2 20

Other uses Not significant Not significant

