
Model	  check	  (ini-al)	  abstrac-on	  
Refine	  -med	  probabilis-c	  automaton.	  

	  

Simulate	  counterexample	  
Execute	  and	  profile	  program	  with	  

Trepn	  (Qualcomm	  Inc.)	  or	  at	  SEFLab	  [4].	  

	  

Spurious	  counterexample	  
Analyze	  generated	  profile.	  

	  

Automa-cally	  refine	  abstrac-on	  
Relate	  profile	  to	  events	  in	  program.	  

	  

Interpreting Energy Profiles with 
CEGAR 

Faculty of Electrical Engineering, Mathematics and Computer Science 
Department of Computer Science – Formal Methods and Tools Group 
http://fmt.ewi.utwente.nl 

Expected	  Results	  
•  Completely automated extraction of models from 

source code. 
•  These models contain sufficient energy information 

to optimize the energy consumption of the program. 
•  We optimize a media player based on these models 

to show that the models are useful in practice. 

Acknowledgements	  
This work is carried out as part of the Energy 
Optimization Framework for Embedded 
Systems (ENOFES) project. 

QR code generated on http://qrcode.littleidiot.be

Work	  Summary	  

Introduc:on	  
•  Optimizing software energy consumption is important. 
•  Energy consumption of one component depends on 

the behavior of other components. 
•  Modeling resource consumption helps for analyzing 

dependencies and optimizing energy behavior. 
•  The Counterexample-Guided Abstraction Refinement 

(CEGAR) approach can automatically extract models 
from source code. 

Problem	  Defini:on	  

Steven te Brinke 
brinkes@ewi.utwente.nl 

•  Existing CEGAR tools [1, 2, 3] do not consider energy 
consumption and timing. 

•  Existing CEGAR tools extract models from source 
code only, but energy information is usually not 
explicitly present in source code. 

•  Therefore, automatically extracted models lack energy 
information. 

Extracting energy 
models with CEGAR. 

Conclusions	  
•  Automatically extract models from source code. 
•  Extract energy profiles with Trepn from Android phones 

and with SEFLab equipment from desktop systems. 
•  Augment extracted models with energy information. 
•  Analyze the energy consumption of software 

components based on these models. 
•  Reduce the energy consumption of software 

implementations based on these models. 

Success	  
Program	  sa-sfies	  
requirements.	  

Current	  model	  is	  result.	  

Real	  
counterexample	  

Program	  violates	  
requirements.	  

Source	  Code	  

Za b

c

dW
P ≤ 0.9 J/s

X
P ≤ 0.8 J/s

Y
P ≤ 1 J/s

References	  
1.  D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software 

model checker Blast: Applications to software engineering. Int. J. 
Softw. Tools Technol. Transf., 9(5), 2007. 

2.  S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular 
verification of software components in C. Trans. Softw. Eng. (TSE), 
30(6):388–402, June 2004. 

3.  E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In TACAS, volume 3440 of 
LNCS. Springer, 2005. 

4.  M.A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, J. Visser. SEFLab: 
A lab for measuring software energy footprints. Green and 
Sustainable Software (GREENS), pp. 30–37, 20 May 2013. 

P

W, 4 J
X, 6 J

Y, 5 J

t

t

max
P


