

A user perspective on energy profiling tools in HPC environments

Fahimeh Alizadeh Moghaddam^{1,2}, Thomas Geenen³, Patricia Lago², Paola Grosso¹

¹ System and Network engineering group, University of Amsterdam

² Software and Services group, VU University Amsterdam

³ SURFsara, Amsterdam, The Netherlands

Introduction

In order to manage the power consumption in HPC environments, the running applications can be profiled using specific tools. The choice for a tool depends on the final purpose of users for the information retrieved.

We categorize two types of users:

- The generic user: interested in summary results
- *The software developer*: interested in behavioral-related energy information.

Research Question

- Under which circumstances should a user choose for an energy profiling tool?
- What will be the consequences in terms of accuracy and overhead of this choice?

Infrastructure Setup

- We use the Cartesius system at SURFsara.
- We run HPC Challenge benchmark as our experimental application.
- SLURM and Score-P are two available tools in the infrastructure.
- The PAPI/RAPL software power model is supported by both tools.

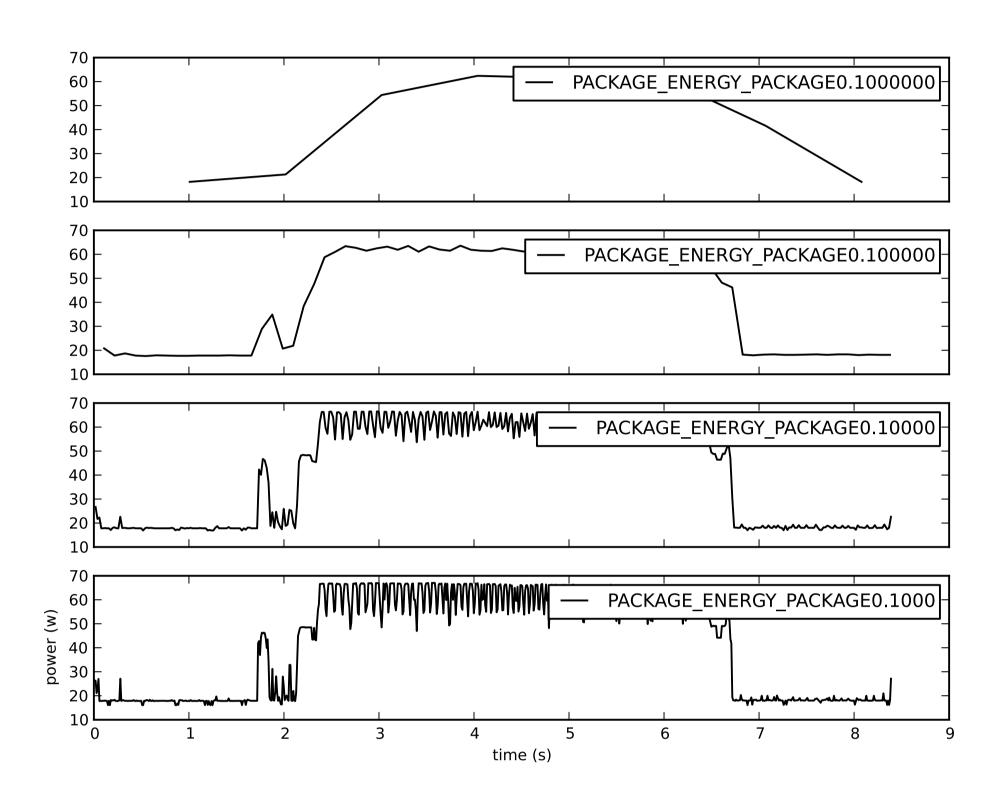
Conclusion

Both tools provide required information to both types of users but they differ in granularity and accuracy:

The generic user:

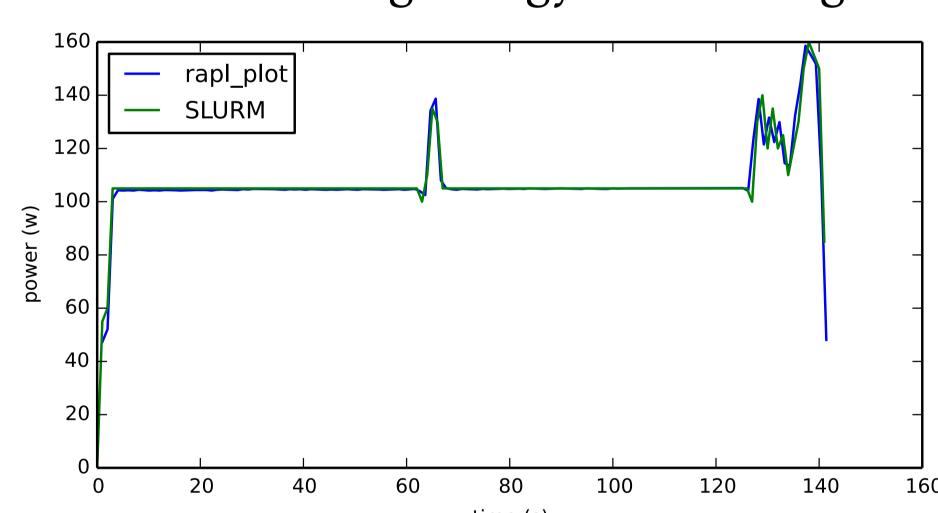
- + SLURM provides accurate summary info
- + fine-grained summary data from Score-P
- very coarse-grained data from SLURM
- Inaccurate reported data by Score-P

The software developer:


- + time series of power consumption using SLURM
- + total power consumption of function calls using Score-P
- No time series provided by the visualization tool of Score-P (CUBE)

Cluster Green Softwar

This work has been sponsored by the European Fund for Regional Development under project MRA Cluster Green Software.


Results

Experiment 1: Collecting power measurements directly by the PAPI library using the rapl_plot application.

- 4 sample rates are considered, from every 1 second (top plot) to every 1000 microseconds (bottom plot)
- As the sample rate decreases, more details are missing from the plots.

Experiment 2: Collecting energy data through SLURM

- The measurements from Rapl_plot and SLURM are almost identical.
- SLURM shows small delays to the sudden changes in power consumption.

Experiment 3: Collecting energy data through Score-P

#	Test		Power Consumption Overhead
1	HPL		6%
2	DCEMM	Single	22.6%
	DGEMM	Star	47.3%
3	FFT	MPI	13.2%
		Single	31.7%
		Star	28.9%
4	LatencyBandwidth		34.9%
5	PTRANS		29.5%
	RandomAccess	MPI	1.7%
6		Single	24.4%
		Star	50.9%
7	RandomAccess _LCG	MPI	1.9%
		Single	21.8%
		Star	46.1%
8	STREAM	Single	-23.3%
		Star	49.2%

- Score-P introduces varying amount of overhead for different application runs.
- MPI code path performs with the least measurement overhead compared to Single and Star variants.