Architecting Software-Intensive System-of-Systems

SEN Symposium

20 January 2017
Amsterdam, The Netherlands

Prof.dr.ir. Bedir Tekinerdogan
Wageningen University, Chair Information Technology
Wageningen, The Netherlands
bedir.tekinerdogan@wur.nl
https://www.linkedin.com/in/bedir

WAGENINGEN UR
For quality of life
Contents

- Architecture Viewpoints
- System Engineering
- System of Systems Engineering
- Summary
Architecture Viewpoints
Architecture Stakeholders

- **system stakeholder**: an individual, team, or organization (or classes thereof) with interests in, or concerns relative to, a system.

Architectural Drivers

- **Stakeholder** is any person who has interest in the architecture.

- Each stakeholder can have different concerns.

- Each concern puts forces on the architect and influences the early design decisions that the architect makes.

![Diagram showing stakeholders and concerns affecting architecture decisions]
Multiple Views of the Architecture...

Floor plan

Interior Plan

Wiring Plan
Architectural Viewpoints

View:
• a representation of a system from the perspective of one or more concerns which are held by one or more stakeholders.

Viewpoint:
• A pattern or template from which to construct individual views.

Example – UML Deployment Viewpoint

Viewpoint

• Name: Deployment Viewpoint
• Stakeholders:
 – System Designer
• Concerns:
 – System Design
• Components:
 – Processing Nodes
• Notation

Deployment View - Example
Rationale for Viewpoints

• **Communication**
 – With stakeholders about design decisions

• **Analysis**
 – to support design decisions and enhance design

• **Support Development**
 – To guide detailed design & implementation
Architecture Framework

• Coherent set of viewpoints
Example - UML

- **Design View**: Classes, interfaces, collaborations
- **Process View**: Process, Threads
- **Implementation View**: Source, binary, executable components
- **Deployment View**: Nodes
- **Use Case View**: Use cases
- **Organization**: Package, subsystem
- **Dynamics**: Interaction, State machine
Example – Views and Beyond Approach

• **Module Styles**
 – How is the architecture structured as a set of implementation units?

• **Component-and-Connector Styles**
 – How is the architecture structured as a set of elements that have run-time behavior and interactions?

• **Allocation Styles**
 – How does the architecture relate to non-software structures in its environment?

Extending Viewpoints

Architecture Framework

- Architecture Framework
- Viewpoint
 - 4+1 Viewpoint
 - V&B
 - Siemens VP
 - ...

Towards an Architecture Framework for System-of-Systems
Architecture Framework

Architecture Framework

Viewpoint

SW Architecture Framework

Enterprise Architecture Framework

4+1 Viewpoint

V&B

Zachman

Siemens VP

TOGAF

RM-ODP

DODAF
Evolution of Architectural Modeling - Viewpoints

- **No Viewpoint Approach**
 - Informal Modeling
 - “Box and Line” architectures

- **Open-ended viewpoints**
 - Predefined Viewpoints
 - Plus mechanisms to add new viewpoints
 - E.g. Views and Beyond Approach

- **Fixed Viewpoints**
 - 4, 4+1, 6, ...

System Engineering
Beyond Software – System Engineering

- A system is a construct or collection of different elements that together produce results not obtainable by the elements alone.
- The elements, or parts, can include people, hardware, software, facilities, policies, and documents; that is, all things required to produce systems-level results.
- The results include system level qualities, properties, characteristics, functions, behavior and performance.
- The value added by the system as a whole, beyond that contributed independently by the parts, is primarily created by the relationship among the parts; that is, how they are interconnected.

International Council on System Engineering
http://www.incose.org/

Not only Software!
The System Engineer

- A system engineer is the connecting link between the disciplines in a project, which are sometimes very different.
- System engineers think along the line of the entire system, independent of software, hardware, or other specific views.
Questions…

• Which domains are needed for system engineering?
• What are the stakeholders for each domain?
• What are the concerns?
• What are the required architecture viewpoints?
• Can we have a complete set for the whole system engineering?
• Or should we consider viewpoints per domain?
• If separate, how to integrate the different views?
• What should be the architecture design process using the viewpoints?
• ….
First Alternative

- One Architecture Framework
- What should be the viewpoints?
- What’s the abstraction level? System components?
- Information loss due to higher abstraction level?
Second Alternative

• Architecture Framework for each domain/discipline...
• Separation of Concerns!
AF for each Domain

How to integrate?
Dominant Decomposition?

• How to design the system?
• Which one is the dominating discipline/domain?
• The results will be different!
Multi-Dimensional Space

- Asymmetric vs. Symmetric Composition
- Identification, encapsulation of any kinds of concerns, simultaneously
 - Introduce new concerns or kinds of concerns at any time, as needed
- Flexible, concern-based composition
- Handling of overlapping, interacting and cross-cutting concerns
- On-demand remodularization
• Add one overarching Framework that is responsible for the trans-discipline/systemic perspective?

![Diagram showing the System Engineering AF hierarchy]

- Architecture Framework
- Integration Architecture Framework
- SW Architecture Framework
- EE Architecture Framework
- ME Architecture Framework
- ... Architecture Framework
AF for each Domain

Architecture Framework-D1

Architecture Framework-D2

Architecture Framework-D3

View

View

View
Many Viewpoints...
System-of-Systems Engineering
System vs. Systems of Systems

- **System**: A functionally, physically, and/or behaviorally related group of regularly interacting or interdependent elements; that group of elements forming a unified whole.

- A **capability** is the ability to achieve a desired effect under specified standards and conditions through combinations of ways and means to perform a set of tasks.

- **Systems of Systems (SoS)** is defined as a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities.
System-of-Systems

- Operator
 - owns
 - * System
 - 1..* System-of-Systems
 - 1..* System Unit
 - realizes
 - * Capability

- System
 - * Operator
 - 1..* System Unit
System of Systems - Fresh Logistics Management/Supply Chains

- Supply chains consist of autonomous organizations that independently make decisions.
- Each organization can be considered as a complex system.
- The operational performance of a supply chain relies on the proper integration of the activities of the organizations.
- Hence, a supply chain system can be viewed as a system of systems.
- System engineering approach can help the modeling and analysis of decentralized supply chain systems.
Farming System-of-Systems

Smart Connected Product

Weather Data System
- Weather Maps
- Weather Forecasts
- Weather Data App

Farm Equipment System
- Field Sensors
- Irrigation Nodes

Irrigation System
- Irrigation App

Seed Optimization System
- Farm Perf. Database

Farm Management System

Towards an Architecture Framework for System-of-Systems
System Engineering vs. SoS Engineering

<table>
<thead>
<tr>
<th></th>
<th>System Engineering</th>
<th>System of Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholder Involvement</td>
<td>Clearer set of stakeholders</td>
<td>Stakeholders at both system level and SoS levels, with competing interests and priorities; all stakeholders may not be recognized</td>
</tr>
<tr>
<td>Governance</td>
<td>Aligned PM and funding</td>
<td>Added levels of complexity due to management and funding for both the SoS and individual systems; SoS does not have authority over all the systems</td>
</tr>
<tr>
<td>Operational Focus</td>
<td>Designed and developed to meet operational objectives</td>
<td>Called upon to meet a set of operational objectives using systems whose objectives may or may not align with the SoS objectives</td>
</tr>
<tr>
<td>Acquisition</td>
<td>Aligned to Milestones, documented requirements, SE with a Systems Engineering Plan</td>
<td>Added complexity due to multiple system lifecycles across acquisition programs, involving legacy systems, systems under development, new developments, and technology insertion; Typically have stated capability objectives upfront which may need to be translated into formal requirements</td>
</tr>
<tr>
<td>Test & Evaluation</td>
<td>Test and evaluation of the system is generally possible</td>
<td>Testing is more challenging due to the difficulty of synchronizing across multiple systems’ life cycles; given the complexity of all the moving parts and potential for unintended consequences</td>
</tr>
<tr>
<td>Boundaries and Interfaces</td>
<td>Focuses on boundaries and interfaces for the single system</td>
<td>Focus on identifying the systems that contribute to the SoS objectives and enabling the flow of data, control and functionality across the SoS while balancing needs of the systems</td>
</tr>
<tr>
<td>Performance and Behavior</td>
<td>Performance of the system to meet specified objectives</td>
<td>Performance across the SoS that satisfies SoS user capability needs while balancing needs of the systems</td>
</tr>
</tbody>
</table>

Types of SoS

- **Virtual.** Virtual SoS lack a central management authority and a centrally agreed upon purpose for the system-of-systems. Large-scale behavior emerges—and may be desirable.

- **Collaborative.** Component systems interact more or less voluntarily to fulfill agreed upon central purposes. For example, the Internet is a collaborative system. The Internet Engineering Task Force works out standards but has no power to enforce them.

- **Acknowledged.** Recognized objectives, a designated manager, however, the constituent systems retain their independent ownership, objectives, funding, and development and sustainment approaches.

- **Directed.** Integrated system-of-systems is built and managed to fulfill specific purposes. Centrally managed; component systems subordinated to the central managed purpose.
Types of SoS

- **Central management authority and centrally agreed upon purpose?**
 - Yes: **X**
 - No: **Virtual SoS**

Virtual SoS

- Systems interact voluntarily to fulfill agreed upon central purpose?
 - Yes: **X**
 - No: **Collaborative SoS**

Collaborative SoS

- Component systems retain independent ownership, objectives, funding, development and sustainment approaches?
 - Yes: **Acknowledged SoS**
 - No: **Directed SoS**
System Development

Architecture

View approach

Single View Fixed Multiple View Open-ended Multiple View

Scale

Single Discipline

System

Systems of Systems

virtual collaborative acknowledged directed
Questions...

• Do we need additional viewpoints for SoS level?
• Or can we use the viewpoints for system engineering (SoS is an example of SE)?
• How to use viewpoints for different types of SoS?
• How to cope with uncertainty about stakeholders?
System Engineering AF

System Engineering Architecture Framework

- Architecture Framework
 - SW Architecture Framework
 - EE Architecture Framework
 - ME Architecture Framework
 - ... Architecture Framework

"Towards an Architecture Framework for System-of-Systems"
System Engineering AF

- Use same set of System Engineering viewpoints
System Engineering AF

- Use additional viewpoints

Diagram showing the Architecture Framework with additional viewpoints:

- SW Architecture Framework
- EE Architecture Framework
- ME Architecture Framework
- ... Architecture Framework
- Integration Architecture Framework
- SoS Integration Architecture Framework
Summary
Summary

• System Engineering requires modeling the architecture from different perspectives
• Currently no coherent system engineering architecture framework exist yet
• Different alternatives can be defined for designing SE Architecture Framework
 – All-in-one approach in which one architecture framework is with viewpoints for representing the architecture of the system
 – Different architecture frameworks for different disciplines
• Important criteria to consider:
 – Separation of Concerns
 – Integrated View
 – Learning Curve
Summary

• System-of-Systems Engineering provides even a further broadening of the scope
• However SoS could be considered as system engineering
• As such viewpoints for system engineering could be reused
 – This needs to be justified
• Different SoS types might impose different constraints on the system