
Enroll
ment(1)Student Course

courseStudent Course
student

Student Course enrollmentStudent CoursecourseStudent Course course

Enroll
ment

Student Course

Enroll
ment

student

Student Course

course

Object-Oriented Reference

Object-Oriented Tuple

Object-Oriented Class

Inverse Reference Navigation

Relations as Tuples [RelJ]

Relation Objects [Rumer, RelJ e] Relations w. Concise Navigation

Inverse Properties [WebDSL] Undirected Graph

Intermediary Nodes

Undirected indirect graph

class%Student%{%}
class%Course%{%}
class%Enrollment%extends
%%Pair<Student,%Course>%{%}

b_takes_m.first%%=>%bob
b_takes_m.second%=>%math

class%Student%{%}%class%Course%{%}
class%Enrollment%{
%%Student%student
%%Course%%course
}

b_takes_m.student%=>%bob
b_takes_m.course%%=>%math

class%Student%{
%%Course*%course;
}
class%Course%{%}

bob.course%=>%math

entity%Student%{
%%Course*%course+
}
entity%Course%{%}

bob.course%%%%%%%%%%%%%=>%math
math<@(Student.course)%=>%bob

entity%Student%{%}%entity%Course%{%}
relation%Enrollment%<*Student,%+Course>

bob.Enrollment%%%=>%math
bob:Enrollment%%%=>%b_takes_m
b_takes_m.from%%%=>%bob
b_takes_m.to%%%%%=>%math

entity%Student%{%}%entity%Course%{%}
relation%Enrollment%{
%%Student%student%*
%%Course%%course%%+
}

bob<@(Enrollment.student).course%%=>%math
bob<@(Enrollment.student)%%%%%%%%%=>%b_takes_m
math<@(Enrollment.course).student%=>%bob
math<@(Enrollment.course)%%%%%%%%%=>%b_takes_m
b_takes_m.student*%%%%%%%%%%%%%%%%=>%bob
b_takes_m.course%%%%%%%%%%%%%%%%%%=>%math

entity%Student%{%
%%Course*%enrollment%+
}
entity%Course%%{%}

bob.enrollment%%=>%math
math.enrollment%=>%bob

entity%Student%{%}%entity%Course%{%}
relation%Enrollment%{
%%Student%student%*
%%Course%%course%%+
}

bob.student.course%%=>%math
bob.student%%%%%%%%%=>%b_takes_m
math.course.student%=>%bob
math.course%%%%%%%%%=>%b_takes_m
b_takes_m.student%%%=>%bob
b_takes_m.course%%%%=>%math

entity%Student%{
%%Course*%course%<@%+%student
}
entity%Course%{%}

bob.course%%%=>%math
math.student%=>%bob

entity%Student%{%}%entity%Course%{%}
relation%Enrollment%{
%%Student%student%<@%*%enrollment
%%Course%%course%%<@%+%enrollment
%%student.course%%<@>%%course.student
}
bob.course%%%%%%%%=>%math
bob.enrollment%%%%=>%b_takes_m
math.student%%%%%%=>%bob
math.enrollment%%%=>%b_takes_m
b_takes_m.student%=>%bob
b_takes_m.course%%=>%math

entity%Student%{%}%entity%Course%{%}
relation%Enrollment%<*Student,%+Course>

bob.Enrollment%%%=>%math
bob:Enrollment%%%=>%b_takes_m
b_takes_m.from%%%=>%bob
b_takes_m.to%%%%%=>%math

(2) Enroll
ment(1)Student Course(2) Enroll

ment(1)Student Course(2)

Object Oriented
Edge name defined in source namespace

Relational (SQL), ER, UML
Edge name defined in source + Inverse lookup

Object Role Modeling
Edge defined in source and target w. diff. names

Graph Databases
Edge defined in source and target w. same name

Ed
ge

Tu
pl

e
O

bj
ec

t

Bidirectional Navigation

N-
ar

y

Fi
rs

t-c
la

ss
 c

itiz
en

sh
ipEnroll

mentstudent course
enrollm.

course
student

Student Course

enrollm.student course

Enroll
ment

Student Course

student course

Concise NavigationConcise Navigation

entity%Student%{
%%name%%%%%:%String
%%avgGrade%:%Int?%=%avg%(
%%%%this%.%enrollment%.%grade
%%)
}

entity%Course%{
%%name%%%%%:%String
}

relation%Enrollment%{
%%Student%*%
%%Course%%+
%%
%%grade%:%Int?
%%late%%:%Int%=%0%(default%value)
%%pass%%:%Boolean%=
%%%%this.grade%@%this.late%>=%6%%
%%<+
%%%%false
}

relation%Mentoring%{
%%Student%mentor%*
%%Enrollment%%%%%?
}

avgGrade%:%Int%=%avg%(%
%%this%.%enrollment%.%grade
)

 : Student
~ [1,1]

 : Enrollment
~ [0,n)

 : Int
~ [0,n)

 : Int
~ [0,1]

 : Int
~ [1,1]

“Multiplicity mismatch:
expected [1,1] got [0,1]”

relation%Enrollment%{
%%Student*%Course+
}

relation%Enrollment%{
%%Student.student*<@**%enrollment
%%Course..course**<@%+%enrollment

**course.student*<@>%student.course
}

Prototype

Type System Shorthand Relation Notation

Multiplicities

Derivations

Multiplicities on relations and attributes remove the
need for collections and nullable types.

There are four multiplicities:

• [0,1] symbol: ? optional, nullable
• [1,1] symbol: required
• [0,n) symbol: * zero, one or more
• [1,n) symbol: + one or more

In the type system types and multiplicities are
modeled orthogonal to each other. This works out
well because these are orthogonal issues.

The navigation names can be automatically derived
if there are no name collisions. A programmer can
also manually define names, and has to do so in
the case of name collisions.

Expands to:

Declarative specification of derived values removes
code for control flow and caching.

There are three attribute types:

• Normal: no derivation, values can always be
assigned

• Default value: if a value is assigned, then this is
returned, else the computed value is returned

• Derivation: no value can be assigned, the
computed value is returned

It does not make sense to define inverse
reference names without role names

Balzer, S.: Rumer: a Programming Language and Modular Verification Technique Based on Relationships. Ph.D. thesis (2011)
Bierman, G., Wren, A.: First-class relationships in an object-oriented language. ECOOP (2005)
Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014)
Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE (2007)
Wren, A.: Relationships for object-oriented programming languages. Technical Report (2007)

[Rumer]
[RelJ]

[WebDSL]
[RelJ e]

D
es

ig
n

Sp
ac

e
fo

r R
el

at
io

ns
La

ng
ua

ge
 P

ro
to

ty
pe

Future Work
• Type-and-Multiplicity-safe operations: edit data

type-safe and preserving multiplicity constraints
• Generalise multiplicities: currently operations

with multiplicities are built in, allow users to
define these

• Extend type system orthogonally: next to type
and multiplicity add ordering, allow duplicates,
etcetera

Relation Navigation
There are three sorts of names defined to navigate:

• Roles: names in relation referring to participants
• Inverses: names in participant to relations
• Shortcuts: names in participants referring to

other participants in relation

Relational Programming Languages
Daco C. Harkes, Eelco Visser

Delft University of Technology, The Netherlands
{d.c.harkes,e.visser}@tudelft.nl

