Relational Programming Languages

Daco C. Harkes, Eelco Visser
Delft University of Technology, The Netherlands
{d.c.harkes,e.visser}@tudelft.nl

Object Oriented

Edge name defined in source namespace

Object-Oriented Reference

Relational (SQL), ER, UML

Edge name defined in source + Inverse lookup

Inverse Reference Navigation

Object Role Modeling

Edge defined in source and target w. diff. names

Inverse Properties [WebDSL]

course —»

Graph Databases

Edge defined in source and target w. same name

Undirected Graph

‘4— enrollment —>‘

Student course —»| Course Student course —»| Course Student Course
<) <- - student- - - - - -1
(@)
i}i class Student { entity Student { entity Student { entity Student {
Course* course; Course* course+ Course* course <- + student Course* enrollment +
} } } }
class Course { } entity Course { } entity Course { } entity Course { }
bob.course => math bob.course => math bob.course => math bob.enrollment => math
math<-(Student.course) => bob math.student => bob math.enrollment => bob
Object-Oriented Tuple Relations as Tuples [RelJ] Intermediary Nodes
Student |<(1)— Enroll —(2)%| Course Student |<(1)— Enrol —(2)%| Course <+(1) (2)>
O ment ment
(_3_ It does not make sense to define inverse
|3 class Student { } entity Student { } entity Course { } reference names without role names entity Student { } entity Course { }
class Course { } relation Enrollment <*Student, +Course> relation Enrollment <*Student, +Course>
class Enrollment extends
Pair<Student, Course> { } bob.EnrollLment => math bob.EnrollLment => math
bob:Enrollment => b_takes m bob:Enrollment => b_takes m
b _takes m.first => bob b_takes m.from => bob b _takes m.from => bob
b _takes m.second => math b _takes m.to => math b_takes m.to => math
Object-Oriented Class Relation Objects [Rumer, Reld €] Relations w. Concise Navigation Undirected indirect graph
Enroll Enroll 1 Enroll [
| ment |_ | ment |_ student, ment | course . -
A,Student Course\‘ ‘,sstudent COUVSG\A 4 cnrolim. enrolim, — Istudent Course\A
Student Course Student Course Student|-------- course ------- »|Course @ @
13} < student ------- -4
_92‘ class Student { } class Course { } entity Student { } entity Course { } entity Student { } entity Course { } entity Student { } entity Course { }
@] class Enrollment { relation Enrollment { relation Enrollment { relation Enrollment {
(:) Student student Student student * Student student <- * enrollment Student student *
Course course Course course + Course course <- + enrollment Course course +
} } student.course <-> course.student }
}
b _takes m.student => bob bob<-(Enrollment.student).course => math bob.course => math bob.student.course => math
b_takes m.course => math bob<-(Enrollment.student) => b_takes m bob.enrollment => b_takes m bob.student => b_takes m
math<-(Enrollment.course).student => bob math.student => bob math.course.student => bob
math<-(Enrollment.course) => b_takes m math.enrollment => b_takes m math.course => b_takes m
b _takes m.student => bob b _takes m.student => bob b_takes m.student => bob
b_takes m.course => math b_takes m.course => math b _takes m.course => math
Concise Navigation Concise Navigation
Bidirectional Navigation
Type System Shorthand Relation Notation
In the type system types and multiplicities are The navigation names can be automatically derived
modeled orthogonal to each other. This works out Prototype If there are no name collisions. A programmer can
well because these are orthogonal issues. also manually define names, and has to do so in
, “Multiplicity mismatch: entity Student { the case of name collisions.
- expected [1,1] got [0,1]” name Strin :
avgGrade Int> & ave ( relation Enrollment {
_ : ‘ Student* Course+
avgGrade : Int = avg ( this . enrollment . grade )
this . enrollment . grade )
) 1 Expands to:
relation Enrollment {
entity Course { Student student <- * enrollment
name String Course course <- + enrollment
Multiplicities )
Multiplicities on relations and attributes remove the ) course.student <-> student.course
need for collections and nullable types. relation Enrollment {
3
There are four multiplicities: Student
Course + Relation Navigation
- [0,1] symbol: ? optional, nullable _ _
. [1,1] symbol: required grade Tnt? There are three sorts of names defined to navigate:
. :O,n symbol: * zero, one or more ._ _ , , .
. n; szmbol' +  one or more late : Int = @ (default value) - Roles: names in relation referring to participants
- ' pass Boolean * Inverses: names in participant to relations
this.grade - this.late >= 6 - Shortcuts: names in participants referring to
Derivations <+ other participants in relation
Declarative specification of derived values removes false
code for control flow and caching. } Future Work
: « Type-and-Multiplicity-safe operations: edit data
There are three attribute types: : ; . o .
yP relation Mentoring { type-safe and preserving multiplicity constraints
. Normal: no derivation, values can always be Student mentor * . Generalise multiplicities: currently operations
assignéd ’ Enrol lment with multiplicities are built in, allow users to
- Default value: if a value is assigned, then this is } ge?nedtr;ese , h " Fto
returned, else the computed value is returned xden Ig_/'of iys edn; Od ogona I}I/. nedx I9 ¥pe
- Derivation: no value can be assigned, the a:\ tmu Iplicity add ordering, aflow duplicates,
computed value is returned etcetera
[Rumer] Balzer, S.: Rumer: a Programming Language and Modular Verification Technique Based on Relationships. Ph.D. thesis (2011)
[RelJ] Bierman, G., Wren, A.: First-class relationships in an object-oriented language. ECOOP (2005)

Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014)
[WebDSL] Visser, E.: WebDSL: A case study in domain-specific language engineering. GTTSE (2007)

[Reld €]

Wren, A.: Relationships for object-oriented programming languages. Technical Report (2007)

First-class citizenship

Delft
e t University of
Technology

N-ary



