
Model	
  check	
  (ini-al)	
  abstrac-on	
  
Refine	
  -med	
  probabilis-c	
  automaton.	
  

	
  

Simulate	
  counterexample	
  
Execute	
  and	
  profile	
  program	
  with	
  

Trepn	
  (Qualcomm	
  Inc.)	
  or	
  at	
  SEFLab	
  [4].	
  

	
  

Spurious	
  counterexample	
  
Analyze	
  generated	
  profile.	
  

	
  

Automa-cally	
  refine	
  abstrac-on	
  
Relate	
  profile	
  to	
  events	
  in	
  program.	
  

	
  

Interpreting Energy Profiles with 
CEGAR 

Faculty of Electrical Engineering, Mathematics and Computer Science 
Department of Computer Science – Formal Methods and Tools Group 
http://fmt.ewi.utwente.nl 

Expected	
  Results	
  
•  Completely automated extraction of models from 

source code. 
•  These models contain sufficient energy information 

to optimize the energy consumption of the program. 
•  We optimize a media player based on these models 

to show that the models are useful in practice. 

Acknowledgements	
  
This work is carried out as part of the Energy 
Optimization Framework for Embedded 
Systems (ENOFES) project. 

QR code generated on http://qrcode.littleidiot.be

Work	
  Summary	
  

Introduc:on	
  
•  Optimizing software energy consumption is important. 
•  Energy consumption of one component depends on 

the behavior of other components. 
•  Modeling resource consumption helps for analyzing 

dependencies and optimizing energy behavior. 
•  The Counterexample-Guided Abstraction Refinement 

(CEGAR) approach can automatically extract models 
from source code. 

Problem	
  Defini:on	
  

Steven te Brinke 
brinkes@ewi.utwente.nl 

•  Existing CEGAR tools [1, 2, 3] do not consider energy 
consumption and timing. 

•  Existing CEGAR tools extract models from source 
code only, but energy information is usually not 
explicitly present in source code. 

•  Therefore, automatically extracted models lack energy 
information. 

Extracting energy 
models with CEGAR. 

Conclusions	
  
•  Automatically extract models from source code. 
•  Extract energy profiles with Trepn from Android phones 

and with SEFLab equipment from desktop systems. 
•  Augment extracted models with energy information. 
•  Analyze the energy consumption of software 

components based on these models. 
•  Reduce the energy consumption of software 

implementations based on these models. 

Success	
  
Program	
  sa-sfies	
  
requirements.	
  

Current	
  model	
  is	
  result.	
  

Real	
  
counterexample	
  

Program	
  violates	
  
requirements.	
  

Source	
  Code	
  

Za b

c

dW
P ≤ 0.9 J/s

X
P ≤ 0.8 J/s

Y
P ≤ 1 J/s

References	
  
1.  D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software 

model checker Blast: Applications to software engineering. Int. J. 
Softw. Tools Technol. Transf., 9(5), 2007. 

2.  S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular 
verification of software components in C. Trans. Softw. Eng. (TSE), 
30(6):388–402, June 2004. 

3.  E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In TACAS, volume 3440 of 
LNCS. Springer, 2005. 

4.  M.A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, J. Visser. SEFLab: 
A lab for measuring software energy footprints. Green and 
Sustainable Software (GREENS), pp. 30–37, 20 May 2013. 

P

W, 4 J
X, 6 J

Y, 5 J

t

t

max
P


