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Expected	
  Results	
  
•  Completely automated extraction of models from 

source code. 
•  These models contain sufficient energy information 

to optimize the energy consumption of the program. 
•  We optimize a media player based on these models 

to show that the models are useful in practice. 
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Work	
  Summary	
  

Introduc:on	
  
•  Optimizing software energy consumption is important. 
•  Energy consumption of one component depends on 

the behavior of other components. 
•  Modeling resource consumption helps for analyzing 

dependencies and optimizing energy behavior. 
•  The Counterexample-Guided Abstraction Refinement 

(CEGAR) approach can automatically extract models 
from source code. 

Problem	
  Defini:on	
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•  Existing CEGAR tools [1, 2, 3] do not consider energy 
consumption and timing. 

•  Existing CEGAR tools extract models from source 
code only, but energy information is usually not 
explicitly present in source code. 

•  Therefore, automatically extracted models lack energy 
information. 

Extracting energy 
models with CEGAR. 

Conclusions	
  
•  Automatically extract models from source code. 
•  Extract energy profiles with Trepn from Android phones 

and with SEFLab equipment from desktop systems. 
•  Augment extracted models with energy information. 
•  Analyze the energy consumption of software 

components based on these models. 
•  Reduce the energy consumption of software 

implementations based on these models. 
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